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Abstract—The formalization of a personalized clinical proce-
dure for the treatment of Autism Spectrum Disorder (ASD) based
on electroencephalography-guided transcranial electrical stimu-
lation (tES) is proposed. The clinical method, already practiced
in a center of therapy for autistic individuals, has been modeled
through a flow chart and a corresponding database in which the
inputs and outputs of each action are recorded. The database is
designed to serve as the training foundation for an artificial intel-
ligence (AI) system that supports the progressive personalization
of the method itself. While tES has shown promise in improving
cognitive and behavioral symptoms in ASD, current protocols
do not take individual EEG conditions into account. The EEG-
guided tES framework is structured as an iterative decision-
making process, where stimulation parameters are dynamically
adjusted based on neurophysiological and clinical responses. In
addition to being modeled, the process has undergone operational
qualification through a verification of its correspondence with the
clinical intervention performed on two ASD patients: one 15-year-
old male patient and one 25-year-old female patient. The study
highlights the potential of an adaptive, EEG-driven approach
to tES, emphasizing the importance of integrating neurophys-
iological biomarkers into personalized treatment strategies for
ASD, with AI as a prospective tool for further enhancing clinical
decision-making.

Index Terms—Electroencephalography, Autism Spectrum Dis-
order, Artificial Intelligence, Transcranial Electric Stimulation,
Personalized Medicine

I. INTRODUCTION

Autism spectrum disorders (ASD) are neurodevelopmen-
tal conditions marked by early deficits in social interaction,
language acquisition, and cognition [1]. A significant subset
of ASD children exhibit EEG abnormalities, ranging from
mild slow waves to epileptiform discharges, often detectable

only during sleep and requiring extended monitoring. The
discharges predominantly affect the frontal cortex, with less
frequent involvement of centro-parietal, temporal, and occip-
ital regions. Increasing evidence indicates that dysfunction in
the frontal cortex may be crucial to the pathophysiology of
ASD [2].

The use of brain stimulation techniques has become increas-
ingly prevalent due to their proven impact on neuroplasticity
and brain oscillations [3]. In recent years, transcranial Electri-
cal Stimulation (tES) has emerged as a promising theraupetic
approach for treating various neurological disorders. Clinical
studies have reported beneficial effects across multiple condi-
tions, including depression, stroke rehabilitation, chronic pain,
and neurodevelopmental disorders [4]. TES consists in the
application of low-intensity electrical currents to the scalp,
inducing acute or long-lasting effects based on the signal
specification [5], [3]. Low-intensity direct current (tDCS),
alternating current (tACS), and random noise current (tRNS)
[6] are among the most widely used techniques. In particular,
tDCS consists of applying a weak uniform direct current di-
rectly to the scalp, thus modulating the excitation or inhibition
of interneuronal circuits [3]. At the microscopic level, it leads
to a change in resting threshold, changes in synaptic processes,
enhancement of synaptic plasticity and effects on glial cells
[7], [8]. Notably, tES, particularly tDCS, has been utilized to
mitigate core symptoms of ASD, including deficits in social
communication, repetitive behaviors, and cognitive impair-
ments [9], [10]. Increasing evidence supports the efficacy of
tDCS in mitigating these symptoms through the modulation of
key brain regions, such as the Dorsolateral Prefrontal Cortex



(DLPFC), Motor Cortex (MC), and Temporoparietal Junction
(TPJ) [11].

Several studies have explored tDCS’s effects on ASD. Qiu
et al. [12] showed that tDCS on the frontal cortex improves
cognitive functions and neural activity. Zemestani et al. [13]
found that tDCS on the DLPFC enhances emotional and
behavioral functions in children with ASD and affects Theory
of Mind (ToM). Salehinejad et al. [14] noted that tDCS
over the vmPFC improves ToM abilities, such as emotion
recognition and mental state reasoning, in children with ASD.

The role of electroencephalography (EEG) in the design and
assessment of transcranial direct current stimulation (tDCS)
treatments for ASD remains limited. Kang et al. [15] employed
proxy EEG markers to compare anodal and cathodal tDCS,
revealing distinct effects on behavior and excitatory-inhibitory
balance, with anodal stimulation showing greater benefits.
Furthermore, Kang et al. [16] analyzed EEG complexity using
the Maximum Entropy Ratio (MER), highlighting that anodal
tDCS over the DLPFC may enhance cortical excitability and
restore neural balance, potentially increasing EEG complex-
ity—an indicator of neural processing and connectivity often
reduced in ASD. No studies in the literature explicitly link the
efficacy analysis of tES to patients’ pre-treatment EEG. More
broadly, the adopted protocol is justified based on the treated
pathology, reflecting an approach still far from personalized
medicine. Moreover, tDCS effects depend on different factors,
namely (i) the size, the material. and the number of the
electrodes, (ii) their positioning and polarity, (iii) the amplitude
and the shape of the applied current, (iv) the duration and
the frequency of stimulation, as well as (v) the properties
of the tissues in the stimulated area [17], [18]. Actually, in
most cases, the treatment design exclusively considers current
waveform and direction, disregarding the influence of all other
stimulation setup parameters [19].

This paper presents a formalized method for the design,
implementation, and evaluation of a therapeutic intervention
based on EEG-guided tES for ASD patients. The intervention,
already in use at a therapy center, has been modeled through
a detailed flowchart and a corresponding database that records
the inputs and outputs of each action taken. This database
serves as the foundation for training an artificial intelligence
(AI) system designed to assist therapists in progressively
personalizing the intervention. The aim is to optimize the
effectiveness of the treatment by refining the stimulation
parameters based on the individual neurophysiological and
clinical responses of the patient.

II. METHOD FORMALIZATION AND DATABASE DESIGN

The formalization of the clinical pathway is described in
Sec. II-A, while the database structure for collecting clinical
and EEG data is reported in Sec. II-B.

A. Phases and tools of the Clinical pathway

Below, the method is described as a sequence of actions
and respective tools in order to make clear and reproducible
EEG-guided tES in patients with ASD.

Registry, anamnestic and clinical data collection. The mul-
tidisciplinary team, composed of neurologists and psycholo-
gists, is responsible for collecting both registry data, including
anamnestic information, and administering psychological tests
and questionnaires. Specifically, the anamnestic data collec-
tion includes familial, physiological, remote pathological, and
proximate pathological history. Subsequently, the following
questionnaires are administered to assess behavioural and cog-
nitive symptoms associated with ASD: the Autism Diagnostic
Observation Schedule (ADOS) for diagnostic observation of
autism, the LEITER QI for cognitive ability assessment, the
Vineland Interview conducted with the patient’s parents to
evaluate adaptive skills, the Wechsler Digit Span Test for
working memory assessment, the Autism Treatment Evalu-
ation Checklist (ATEC) to monitor communicative, social,
and behavioural progress and the parent’s interview regarding
obsessive symptoms and behavioural problems.

Pre-treatment EEG data collection and processing. A Quan-
titative EEG (Q-EEG) is recorded in two conditions: Eyes-
Open (EO) and Eyes-Closed (EC). The recording lasts 6
minutes while patients remain seated in a comfortable chair at
rest. This is followed by a 30-minute EEG recording during
an auditory task in the EO condition. During the auditory
task, sounds are presented randomly every 850 ms for 100
ms. These sounds include either a low-frequency tone (1000
Hz) or a high-frequency tone (1300 Hz), as well as complex
stimuli consisting of five short tones (frequencies: 500, 1000,
1500, 2000, 2500 Hz). The total number of stimuli is 2000,
with an 80% probability for the low-frequency tone and 10%
for either the high-frequency or complex tones. The task is
passive, meaning participants simply read a book or watch
TV while ignoring the sounds. EEG recordings are collected
using 19 electrodes placed according to the 10-20 International
EEG System, with a sampling rate of 256 Hz. Electrodes are
referenced to the earlobes (A1-A2), and the ground electrode
is positioned between Fpz and Fz. Impedance is kept below
5 kΩ. During pre-processing phase, EEG signals are filtered
between 0.5 and 50 Hz, and the reference montage is changed
from linked ears to an average montage. Eye-blink artifacts are
corrected using Independent Component Analysis (ICA) by
zeroing out components related to eye blinks. Additionally,
EEG segments with amplitudes exceeding 50 µV for slow
waves (0–1 Hz), 35 µV for fast waves (20–35 Hz), or 100
µV overall are excluded. Finally, manual inspection ensures
effective artifact removal, and a minimum of 90 seconds of
artifact-free EEG is required for analysis. In the processing
phase, resting-state EEG analysis is computed for all channels
to quantify the absolute power in the following frequency
bands: delta ([1–4] Hz), theta ([4–8] Hz), alpha ([8–13] Hz),
low beta ([13–20] Hz), high beta ([20–30] Hz), and gamma
([30–45] Hz). Subsequently, P3a and Mismatch Negativity
(MMN) ERP components are extracted from the EEG acquired
during the auditory task. P3a is a subcomponent of P300,
linked to stimulus-driven attention mechanisms as a response
to new and unexpected events [20] [21]. The MMN is an
early negative ERP component elicited by an odd stimulus in



a sequence of acoustic stimuli. It is an index of pre- attentive
processes and it is more evident when the subject ignores the
stimuli [21] [22].

Diagnosis making. Clinical data and EEG analysis are
integrated to identify the patient’s condition by analyzing
symptoms, clinical signs, and diagnostic findings, forming the
basis for an accurate diagnosis.

EEG feature modulation targeting. The definition of ex-
pected electroencephalographic outcomes based on the anal-
ysis of EEG data is posed. In this phase, the therapeutic
rules, namely the relationship between clinical diagnosis, EEG
targets, and clinical outcomes, are defined. These rules allow
for the association of a specific clinical condition with EEG
signal alterations, the identification of EEG targets to modulate
for clinical improvement, and the correlation of EEG changes
with symptom reduction.

TES protocol designing. A customised (tES) protocol is
created, based on the identified EEG features and the collected
clinical data. In this phase, the treatment rules, namely the
association between EEG feature target and tES protocol
parameters, are established. These rules specify the stimula-
tion parameters required to modulate specific EEG features,
ensuring targeted neuromodulation for therapeutic efficacy.
During this phase, stimulation polarity, electrodes positioning,
electrodes dimensions, current waveform, current amplitude,
frequency range, stimulation duration and number of sessions
are defined.

TES protocol application. TES protocol is implemented
according to the defined parameters.

Final treatment assessment. The effectiveness of the tES
protocol is evaluated by integrating clinical, psychological, and
EEG data. This phase assesses the modulation of targeted EEG
features, the correlation between EEG changes and symptom
reduction, and the overall clinical improvement, ensuring the
updating of therapeutic and treatment rules.

B. Database structure

The structure of the database has been specifically designed
to train two AI algorithms, both implemented ad hoc to attempt
predicting, respectively, (i) the target features that best fit
the clinical diagnosis, made by the doctors, and (ii) the best
setup(s) of the stimulation parameters, in terms of successful
outcome of the tES.

Emerging clinical evidence suggests that EEG features used
in tES treatment may not always correlate with clinical out-
comes, indicating a need for continuous refinement in under-
standing their relationship. To address this, an AI model could
be developed to analyze pre- and post-tES assessments, using
combinations of EEG features to guide clinical decisions.
Each intervention will follow predefined rules for selecting
EEG features and stimulation parameters, and post-treatment,
different feature combinations will be tested to identify those
most closely linked to positive outcomes. Both EEG data and
clinical results will be systematically recorded to refine the
therapeutic approach.

Clinical and EEG data
collection and processing

Are data 
sufficient for the

diagnosis?

NO

YES

tES protocol 
designing
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Fig. 1. Flowchart illustrating the decision-making pathway from diagnosis to
the evaluation of tES treatment efficacy.

Given the problem’s nature, supervised machine learning
is the most appropriate method, as it allows for leveraging
expert-interpreted data for prediction. For each patient, paired
EEG traces are collected before and after tES, along with
physicians’ assessments of the patient’s condition and the
alignment of EEG features with their diagnosis.

This pipeline allows one to have, on the one hand, sets
of EEG features and the interpretation by the physicians of
the EEG traces carried out using such features, before and
after delivering the stimulation. On the other hand, the set of
values of the stimulation parameters. The former will be used
as predictors for the first prediction task, whereas the latter for
the second.

In addition, the response of the physicians about the use-



fulness of the tES, obtained by comparing the status of the
patient before and after the stimulation, will serve as the
corresponding labels. Based on these considerations, opting
for supervised learning algorithms is the logical choice, as
will be better clarified later.

Concerning the use of machine learning, this is preferred
over more complex algorithms, such as deep neural networks,
since these are likely to result in high overfitting, for two main
reasons: (i) the low availability of data, which is due to the fact
that it is not simple to collect numerous EEG traces of patients
with specific diseases; (ii) the high level of noise present in
the EEG signal, which could be erroneously learned by too
complex models.

A complete list of the acquired data for each sample of the
database is reported below.

• Anamnestic and clinical data, including scores from tests
and questionnaires administered to patients and patients’
parents.

• EEG data collection, including the condition markers
(open/closed eyes, cognitive task/resting state), sampling
rate, number of acquisition channels and positioning,
reference and ground position, acquisition device descrip-
tion, electrode material description, electrode area and
shape, contact impedance values for each electrode;

• tES treatment parameters, including stimulation polar-
ity, number of electrodes, electrode position, electrode
material, electrode area and shape, current amplitude,
offset, current waveform, frequency, contact impedance
values for each electrode, stimulation duration, number
of sessions, sessions frequency;

The database will be created based on these information and
on the aforementioned considerations. In particular, the EEG
features, for the first task, and the values of the stimulation
parameters, for the second, will be used as input to train the
machine learning algorithm, each of them being a predictor.
The information about the status of the patient before and after
tES treatment, instead, will be merged by the clinical experts,
in order to elaborate a binary response about if the patient
improved their condition or not. Such a response will be used
as a 1 or 0 label in the training phase of the machine learning
algorithm.

Obviously, before training the AI algorithm and thus be-
ginning to receive suggestions about how to set the tES
parameters, an initial configuration must be decided. This will
be done by the expert physicians, by analyzing the patients’
medical history and, in particular, their familiar, physiological,
and pathological (both remote and proximate) one, plus the
answers to a battery of psychological tests. Thus, also this set
of data must be added to the database, to properly start the
above-described tES teraphy flowchart.

Before and after each stimulation, several EEG traces of
every patient will be acquired. For each of them, different
features will be considered, so as to enlarge the database for
the first prediction task. Also in this case, the physicians will
guide the decision about which features to take into account,

based on their experience. This allows the total number of
feature to be limited.

It is worth noting that the AI algorithm will be employed
only when the database will be sufficiently populated (at least
one hundred of patients’ EEG traces), given the necessity of a
conspicuous amount of data to make AI perform the desired
task correctly.

III. OPERATIONAL QUALIFICATION

The method design was qualified through an observational
study of the interventions on two patients diagnosed with
ASD with comorbid Obsessive-Compulsive Disorder (OCD)
and anxiety.: a 25-year-old female and a 15-year-old male.
All the interventions were already planned to be implemented
in a rehabilitation center, fully compliant with applicable reg-
ulations and standards in Italy for such treatments, including
EU Regulation 2016/679 (GDPR) and Legislative Decree No.
101/2018, which govern personal data protection and privacy.
A neurologist and a psychologist conducted comprehensive
neurological and psychological assessments to establish the
diagnosis, define the tES treatment, and evaluate its effects
over time. The clinical and electroencephalographic evalu-
ation included both the collection of registry, anamnestic,
and clinical data through standardized questionnaires and
interviews, and qEEG and ERP analysis as detailed in Sec.
II-A. The integration of these EEG features with clinical data
guided both the diagnostic process and the development of the
customised tES protocol.

For the selection of stimulation parameters, two distinct
approaches were adopted based on the patients’ baseline EEG
and clinical findings. In the case of the female patient, qEEG
and ERP analysis did not reveal any significant pathological
alterations. Therefore, the stimulation parameters were chosen
based on established protocols from the literature on ASD,
particularly the approach described by D’Urso et al. [23]. Tran-
scranial Direct Current Stimulation (tDCS) was administered
once per day for a month and a half, excluding weekends.
Each session lasted 20 minutes with a current intensity of 2
mA. Stimulation was delivered via rubber electrodes enclosed
in saline-soaked sponges, positioned using an adapted EEG
headset for consistent placement. Anodal stimulation targeted
the bilateral pre-Supplementary Motor Area (pre-SMA), with
the active electrode (5 × 5 cm) placed 15% of the distance
between the inion and nasion anterior to Cz, and the reference
electrode (2.5 × 5 cm) positioned at CPz.

In contrast, the male patient exhibited clear electroen-
cephalographic abnormalities consistent with ASD, primarily
affecting the fronto-central-parietal regions. Specifically, the
abnormalities were observed in the sensory parietal areas and
the executive central regions in EO condition. These included
a shift in the alpha peak to higher frequencies, above 9 Hz,
predominantly in the frontal regions as showed in Fig. 2, an
increase in the amplitude of the beta 2 band in the F4 electrode
site, and an elevated amplitude of delta-theta waves in the
central region (C4). These findings reflect characteristic EEG



Fig. 2. Power spectra in F3 channel. The blue line represents the normative
power trend according to Kropotov et al. [24], the red line represents the male
subject’s power values, and the colored areas show the difference between the
subject’s and normative power values. The abnormal peak shift in the Alpha
band EEG is highlighted in red.

patterns that are commonly associated with ASD, particularly
with regard to sensory processing and executive functions.

TES treatments were administered once per day for one and
a half months, excluding weekends. The half-sine transcranial
stimulation was delivered through two rubber electrodes en-
closed in saline-soaked sponges, with the reference electrode
consistently placed at CPz, following the International 10-
20 EEG system. In each sessions, six 15-minute stimulations
with different parameters were used. Two conditions involved
anodal stimulation with the anode (5 x 5 cm) between F3
and FC3, with a half-sine waveform at a randomly selected
frequency of 20–30 Hz or 4–8 Hz, both with a current
amplitude of 1 mA, aiming to reduce beta and theta power,
respectively. Other two conditions targeted the same frequency
bands but with the anode positioned between F4 and FC4.
The final two conditions aimed to enhance alpha power, using
anodal stimulation at a fixed frequency of 10 Hz with a 2 mA
current, with the anode placed either between F3 and FC3 or
between F4 and FC4.

To assess the treatment’s efficacy, post-treatment qEEG
recordings and clinical evaluations were performed, integrating
EEG feature analysis and psychological assessment results.
For the female patient, both clinical and EEG data indicated
a worsening trend. Clinically, ASD symptoms deteriorated,
While qEEG analysis revealed the following abnormalities: a
generalized decrease in alpha band power at occipital regions,
an increase in beta1 band power at F3 and F4, and an increase
in the alpha peak frequency at closed eyes over Cz and O1.
Based on these findings, the tES protocol parameters were
modified. In particular, two distinct stimulation protocols were
administered, each involving the previous both active electrode
(5 × 5 cm) covering channels FC1, FC2, and FCz, and the
reference electrode (2.5 × 5 cm) positioned at CPz, following
the International 10–20 EEG system. In the first stimulation,
anodal transcranial alternating current stimulation (tACS) was
applied, delivering a current amplitude of 2 mA with a
randomly selected frequency within the 8–12 Hz range. In the
second stimulation, cathodal tACS was administered with a
current amplitude of 1 mA and a randomly selected frequency
within the 20–30 Hz range. Conversely, for the male patient,
the assessment revealed improvements in both EEG features

Fig. 3. Comparison of power spectra of the male patient after (blue line) and
before (red line) tES treatment in F3 channel. The colored areas represent the
difference between the pre- and post-treatment power spectra. The red circle
highlights the frequency shift of the alpha peak toward normal conditions
following the treatment.

and clinical symptoms. In particular, the questionnaire to the
patient’s parent focused on obsessive-compulsive symptoms
and anxiety showed an improvement compared to the control,
while regarding the Q-EEG findings, there was an increase
in alpha amplitude, a reduction in alpha frequency, and a
decrease in beta amplitude over the centro-frontal channels
in EC condition (Fig. 3).

As a result, the treatment protocol remained unchanged.
tES stimulation will continue for both patients for the same

duration and number of sessions as previously conducted until
the next EEG and psychological evaluations. These follow-
up assessments will determine whether the treatment has
achieved the desired effects in terms of clinical outcomes and
EEG features. If significant improvements are observed, the
treatment will be discontinued. However, if the expected thera-
peutic benefits are not achieved, the treatment will be repeated
with updates to both the therapeutic and treatment guidelines,
including potential adjustments to stimulation parameters.

IV. DISCUSSIONS

This study formalizes an existing intervention method for
patients with ASD based on EEG-guided transcranial elec-
trical stimulation (tES). The aim is to provide clarity and
structure to a clinical practice that was previously guided by
empirical approaches moving toward a standardized clinical
pathway. The formalization process has helped clinicians
conceptualize the existence of two different sets of rules that
guide their diagnostic and therapeutic practices: the therapeu-
tic rule, targeting specific EEG features based on diagnosis
and therapeutic goals, and the treatment rule, determining
the stimulation parameters according to the identified EEG
features. By formalizing the method, clinicians employing this
innovative approach have gained a clearer and more systematic
understanding of the process. The developed flowchart and
database systematize the various steps of the intervention and
provide a structured way to define and track objectives and
their associated indicators. As a result, clinicians now have
a more explicit understanding of the iterative nature of their
intervention, improving both transparency and predictability in
the treatment process. This formalized approach helps refine



clinical practice and can serve as the foundation for future
developments. An essential part of this approach is the iterative
decision-making structure, where stimulation parameters are
adjusted based on neurophysiological and clinical responses.
This iterative process has already been operationalized and
verified through its application to two ASD patients. While this
small sample size is a limitation in terms of generalizability,
the verification serves as an initial validation of the method,
suggesting that a more personalized and data-driven approach
may be beneficial for optimizing treatment. The integration
of artificial intelligence (AI) has the potential to enhance this
framework by refining clinical decision-making. By analyzing
the database, AI could identify patterns in EEG data linked
to therapeutic outcomes, optimize stimulation parameters, and
improve the selection of relevant EEG features. This would
enable more personalized, evidence-based tES interventions.
In the future, an AI-driven decision-support system could
assist clinicians in adjusting stimulation protocols in real-
time, allowing for more adaptive treatments tailored to each
patient’s neurophysiological profile. However, further research,
particularly larger cohort studies, is necessary to refine ther-
apeutic guidelines and improve EEG-based predictions. A
comprehensive database combining EEG data with clinical
outcomes, along with machine learning models, would enable
dynamic adjustments to stimulation parameters for optimal
treatment efficacy.
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